Source data
1. 1 arcsecond SRTM-derived Smoothed Digital Elevation Model (DEM-S; ANZCW0703014016)
2. Aspect derived from the 1 arcsecond SRTM DEM-S
3. Slope derived from the 1 arcsecond SRTM DEM-S
4. Monthly cloud cover fraction (Jovanovic et al., 2011)
5. Monthly albedo derived from AVHRR (Donohue et al., 2010)
6. Monthly minimum and maximum air temperature (Bureau of Meteorology)
7. Monthly vapour pressure (Bureau of Meteorology)
8. Monthly fractional cover (Donohue et al., 2010)
9. Monthly black-sky and white-sky albedo from MODIS (MCD43A3, B3) (Paget and King, 2008; NASA LP DAAC, 2013)
10. Measurements of daily sunshine hours, 9 am and 3pm cloud cover, and daily solar radiation from meteorological stations around Australia (Bureau of Meteorology)
Solar radiation model
Solar radiation was calculated using the SRAD model (Wilson and Gallant, 2000), which accounts for:
Annual variations in sun-earth distance
Solar geometry based on latitude and time of year
The orientation of the land surface relative to the sun
Shadowing by surrounding topography
Clear-sky and cloud transmittance
Sunshine fraction (cloud-free fraction of the day) in morning and afternoon
Surface albedo
The effects of surface temperature on outgoing long-wave radiation, which is modulated by incoming radiation and moderated by vegetation cover
Atmospheric emissivity based on vapour pressure
All input parameters were long-term averages for each month, i.e., monthly climatologies of cloud cover, air temperature, vapour pressure, fractional cover, AVHRR albedo and MODIS albedo.
Circumsolar coefficient was fixed both spatially and temporally at 0.25, while clear sky atmospheric transmissivity and cloud transmittance were varied. Transmittance measures the fraction of radiation passing through a material (air or clouds in this case), while transmissivity measures that fraction for a specified amount of material. SRAD uses a transmittance parameter for cloud, representing an average of all cloud types during cloudy periods, and a transmissivity parameter for clear sky so that the transmittance can vary with the position of the sun in the sky and hence the thickness of atmosphere that radiation passes through on its way to the ground. The clear sky transmissivity τ and cloud transmittance β were calibrated using observed daily radiation and sunshine hours.
References
Donohue R. J., McVicar T. R. and Roderick M. L. (2010a). Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. Journal of Hydrology, 386, 186-197, doi:10.1016/j.jhydrol.2010.03.020.
Donohue, R. J., T. R. McVicar, L. Lingtao, and M. L. Roderick (2010b). A data resource for analysing dynamics in Australian ecohydrological conditions, Austral Ecol, 35, 593–594, doi: 10.1111/j.1442-9993.2010.02144.x.
Erbs, D. G., S. A. Klein, and J. A. Duffie (1982), Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation, Solar Energy, 28(4), 293-302.
Jovanovic, B., Collins, D., Braganza, K., Jakob, D. and Jones, D.A. (2011). A high-quality monthly total cloud amount dataset for Australia. Climatic Change, 108, 485-517.
NASA Land Processes Distributed Active Archive Center (LP DAAC) (2013). MCD43A3, B3. USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota
Paget, M.J. and King, E.A. (2008). MODIS Land data sets for the Australian region. CSIRO Marine and Atmospheric Research Internal Report No. 004.
https://remote-sensing.nci.org.au/u39/public/html/modis/lpdaac-mosaics-cmar
Wilson, J.P. and Gallant, J.C. (2000) Secondary topographic attributes, chapter 4 in Wilson, J.P. and Gallant, J.C. Terrain Analysis: Principles and Applications, John Wiley and Sons, New York.