This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.15) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).
The Yarramundi Irrigated site is an improved, managed pasture on the Western Sydney University Hawkesbury campus. Original woodland vegetation was cleared prior to 1950. A mixture of native and exotic grasses and forbs dominate the site, which is used by cattle in an intensively managed grazing operation. The flux tower was established in October of 2019 and is managed by the Hawkesbury Institute for the Environment, with partial support from TERN and WSU Office of Estate and Commercial (Farm Production Unit).
The climate is warm-temperate, with annual rainfall averaging 728 mm, mean maximum temperature in January of 30.4°C and mean minimum temperature in July of 3.6°C (BOM station 067105). The elevation of the site is about 20 m asl and the topography is flat. The soil is sandy loam in texture, organic carbon content is <1%.
Credit
We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging.
Yarramundi Irrigated Flux Tower station is managed by Western Sydney University. Infrastructure at the site was funded by the Terrestrial Ecosystem Research Network (TERN), a project of the Commonwealth’s National Collaborative Research Infrastructure Strategy (NCRIS). This site is part of OzFlux Australia.
Purpose
The purpose of Yarramundi Irrigated Paddock flux station is to:
- measure the exchange of carbon dioxide, water vapour and energy between a warm-temperature pasture ecosystem and the atmosphere using micrometeorological techniques
- support an understanding of forage dynamics on an actively grazed pasture
- support an understanding of environmental variability on ecosystem processes (such as photosynthesis, respiration or changes in plant structure and function)
- utilise the measurements for parameterising forage and grazing models
- utilise the measurements for parameterising and validating remote sensing measurements
- utilise the measurements for parameterising and validating the Earth System models to better understand the effects of climate change.
Data Processing
File naming convention
The NetCDF files follow the naming convention below:
SiteName_ProcessingLevel_FromDate_ToDate_Type.nc
- SiteName: short name of the site
- ProcessingLevel: file processing level (L3, L4, L5, L6)
- FromDate: temporal interval (start), YYYYMMDD
- ToDate: temporal interval (end), YYYYMMDD
- Type (Level 6 only): Summary, Monthly, Daily, Cumulative, Annual
- Summary: This file is a summary of the L6 data for daily, monthly, annual and cumulative data. The files Monthly to Annual below are combined together in one file.
- Monthly: This file shows L6 monthly averages of the respective variables, e.g. AH, Fc, NEE, etc.
- Daily: same as Monthly but with daily averages.
- Cumulative: File showing cumulative values for ecosystem respiration, evapo-transpiration, gross primary product, net ecosystem exchange and production as well as precipitation.
- Annual: same as Monthly but with annual averages.
Lineage
All flux raw data is subject to the quality control process OzFlux QA/QC to generate data from L1 to L6. Levels 3 to 6 are available for re-use. Datasets contain Quality Controls flags which will indicate when data quality is poor and has been filled from alternative sources. For more details, refer to Isaac et al. (2017).