Data Apps
EcoImagesEcoPlots
Tools
CoESRA Virtual DesktopData Discovery PortalLandscape Data VisualiserSHaRED Data SubmissionTERN Linked Data ResourcesTERN Account
Resources
Terms Of UseDisclaimerCopyrightData LicensingHelp & Support
logo
Data

Data Discovery

  • Home
  • Search
  • Resources
    LTES SurveyResearch Infrastructure
    TDDP User ManualTDDP API

Ridgefield Flux Data Release 2025_v1 

Ver: 2025_v1
Status of Data: completed
Update Frequency: biannually
Security Classification: unclassified
Record Last Modified: 2025-03-25
Viewed 11 times
Accessed 7 times
Dataset Created: 2025-03-13
Dataset Published: 2025-03-25
Data can be accessed from the following links:
HTTPPoint-of-truth metadata URLOPeNDAPNetCDF files (2025_v1)HTTPro-crate-metadata.json
How to cite this collection:
Beringer, J., Lardner, T. & Moore, C. (2025). Ridgefield Flux Data Release 2025_v1. Version 2025_v1. Terrestrial Ecosystem Research Network. Dataset. https://dx.doi.org/10.25901/ampe-aw02 
This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).

The flux station is located within an area of dryland agriculture. The surrounding area is dominated by broadacre farming practices. The vegetation cover is predominantly pasture. Elevation of the site is close to 330 m. Climate information comes from the nearby Pingelly BoM AWS station 010626 (1991 to 2016) and shows mean annual precipitation is approximately 445 mm with highest rainfall in June and July of 81 mm each month. Maximumum and minuimum annual rainfall is 775 and 217 mm, respectively. Maximum temperatures range from 31.9 °C (in Jan) to 15.4 °C (in July), while minimum temperatures range from 5.5 °C (in July) to 16.0 °C (in Feb). 
Credit
We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging. The site is managed by the University of Western Australia. The flux station is part of the Australian OzFlux Network and contributes to the international FLUXNET Network. 
Purpose
The purpose of the Ridgefield Flux Station is to:
  • monitor and determine the balance of environmental demands for water yields, agricultural productivity, GHG budgets and biodiversity within a catchment landscape
  • provide information to establish a modelling tool for GHG and water fluxes across various land use types, in order to benefit land management practices in the wheatbelt of Western Australia.
The station is a crucial component of the UWA critical zone observatory which will be the site of a multidisciplinary approach to understanding the landscape dynamics. 
Lineage
All flux raw data is subject to the quality control process OzFlux QA/QC to generate data from L1 to L6. Levels 3 to 6 are available for re-use. Datasets contain Quality Controls flags which will indicate when data quality is poor and has been filled from alternative sources. For more details, refer to Isaac et al. (2017). 
Method DocumentationIsaac P., Cleverly J., McHugh I., van Gorsel E., Ewenz C. and Beringer, J. (2017). OzFlux data: network integration from collection to curation, Biogeosciences, 14: 2903-2928
Procedure StepsData not provided.
Approximately 12km west of Pingelly, near Perth, Western Australia
Temporal Coverage
From 2015-03-29 to 2025-02-02 
Spatial Resolution

Data not provided.

Vertical Extent

Data not provided.

Data Quality Assessment Scope
Processing levels

Under each of the data release directories, the netcdf files are organised by processing levels (L3, L4, L5 and L6):
  • L3 (Level 3) processing applies a range of quality assurance/quality control measures (QA/QC) to the L1 data. The variable names are mapped to the standard variable names (CF 1.8) as part of this step. The L3 netCDF file is then the starting point for all further processing stages.
  • L4 (Level 4) processing fills gaps in the radiation, meteorological and soil quantities utilising AWS (automated weather station), ACCESS-G (Australian Community Climate and Earth-System Simulator) and ERA5 (the fifth generation ECMWF atmospheric reanalysis of the global climate).
  • L5 (Level 5) processing fills gaps in the flux data employing the artificial neural network SOLO (self-organising linear output map).
  • L6 (Level 6) processing partitions the gap-filled NEE into GPP and ER.
Each processing level has two sub-folders ‘default’ and ‘site_pi’:
  • default: contains files processed using PyFluxPro
  • site_pi: contains files processed by the principal investigators of the site.
If the data quality is poor, the data is filled from alternative sources. Filled data can be identified by the Quality Controls flags in the dataset. Quality control checks include:
  • range checks for plausible limits
  • spike detection
  • dependency on other variables
  • manual rejection of date ranges
Specific checks applied to the sonic and IRGA data include rejection of points based on the sonic and IRGA diagnostic values and on either automatic gain control (AGC) or CO2 and H2O signal strength, depending upon the configuration of the IRGA.

Ridgefield Flux Tower was established in 2016, and is currently active. The processed data release is currently ongoing, biannually. 
Isaac P., Cleverly J., McHugh I., van Gorsel E., Ewenz C. and Beringer, J. (2017). OzFlux data: network integration from collection to curation, Biogeosciences, 14: 2903-2928
Data Quality Assessment Outcome
Data not provided. 
ANZSRC - FOR
Atmospheric sciences
Climate change impacts and adaptation
Ecosystem function
Environmental management
Soil sciences
GCMD Sciences
LAND SURFACE - SOIL TEMPERATURE
ATMOSPHERE - TURBULENCE
ATMOSPHERE - EVAPOTRANSPIRATION
LAND SURFACE - LAND PRODUCTIVITY
ATMOSPHERE - HUMIDITY
ATMOSPHERE - HEAT FLUX
ATMOSPHERE - TRACE GASES/TRACE SPECIES
ATMOSPHERE - LONGWAVE RADIATION
ATMOSPHERE - INCOMING SOLAR RADIATION
BIOSPHERE - TERRESTRIAL ECOSYSTEMS
ATMOSPHERE - ATMOSPHERIC PRESSURE MEASUREMENTS
ATMOSPHERE - SHORTWAVE RADIATION
ATMOSPHERE - WIND SPEED
SOLID EARTH - BIOGEOCHEMICAL PROCESSES
LAND SURFACE - SOIL MOISTURE/WATER CONTENT
ATMOSPHERE - ATMOSPHERIC CARBON DIOXIDE
ATMOSPHERE - PRECIPITATION AMOUNT
BIOSPHERE - PHOTOSYNTHETICALLY ACTIVE RADIATION
ATMOSPHERE - WIND DIRECTION
ATMOSPHERE - AIR TEMPERATURE
Horizontal Resolution
Point Resolution
Instruments
Campbell Scientific CS650
Campbell Scientific CSAT3
Kipp&Zonen CNR4
HyQuest Solutions CS700
Hukseflux HFP01
LI-COR LI-7500
Vaisala HMP155
LI-COR LI-7500A
Parameters
wind speed
vertical wind
magnitude of surface downward stress
Monin-Obukhov length
net ecosystem productivity
gross primary productivity
surface friction velocity
ecosystem respiration
net ecosystem exchange
specific humidity saturation deficit in air
surface upward flux of available energy
enhanced vegetation index
downward heat flux at ground level in soil
volume fraction of condensed water in soil
surface upwelling longwave flux in air
thickness of rainfall amount
northward wind
mole fraction of water vapor in air
water vapor partial pressure in air
wind from direction
surface upward mole flux of carbon dioxide
specific humidity
air temperature
surface net downward radiative flux
surface upward sensible heat flux
surface upward latent heat flux
eastward wind
mass concentration of water vapor in air
water evapotranspiration flux
water vapor saturation deficit in air
surface air pressure
surface upwelling shortwave flux in air
surface downwelling longwave flux in air
soil temperature
mole fraction of carbon dioxide in air
surface downwelling shortwave flux in air
relative humidity
Platforms
Ridgefield Flux Station
Temporal Resolution
1 minute - < 1 hour
Topic
climatologyMeteorologyAtmosphere
User Defined
AU-Rgf
Eddy Covariance
dryland agriculture
pasture
Author
Beringer, Jason
Co-Author
Lardner, Tim
Moore, Caitlin
Contact Point
Beringer, Jason
Publisher
Terrestrial Ecosystem Research Network
Beringer J., Hutley L. B., McHugh I., Arndt S. K., Campbell D., Cleugh H. A., Cleverly J., Resco de Dios V., Eamus D., Evans B., Ewenz C., Grace P., Griebel A., Haverd V., Hinko-Najera N., Huete A., Isaac P., Kanniah K., Leuning R., Liddell M. J., Macfarlane C., Meyer W., Moore C., Pendall E., Phillips A., Phillips R. L., Prober S. M., Restrepo-Coupe N., Rutledge S., Schroder I., Silberstein R., Southall P., Yee M. S., Tapper N. J., van Gorsel E., Vote C., Walker J. and Wardlaw T. (2016). An introduction to the Australian and New Zealand flux tower network - OzFlux, Biogeosciences, 13: 5895-5916
Supplemental Information
Data not provided. 
Resource Specific Usage
Data not provided. 
Environment Description
File naming convention

The NetCDF files follow the naming convention below:

SiteName_ProcessingLevel_FromDate_ToDate_Type.nc
  • SiteName: short name of the site
  • ProcessingLevel: file processing level (L3, L4, L5, L6)
  • FromDate: temporal interval (start), YYYYMMDD
  • ToDate: temporal interval (end), YYYYMMDD
  • Type (Level 6 only): Summary, Monthly, Daily, Cumulative, Annual
For the NetCDF files at Level 6 (L6), there are several additional 'aggregated' files. For example:
  • Summary: This file is a summary of the L6 data for daily, monthly, annual and cumulative data. The files Monthly to Annual below are combined together in one file.
  • Monthly: This file shows L6 monthly averages of the respective variables, e.g. AH, Fc, NEE, etc.
  • Daily: same as Monthly but with daily averages.
  • Cumulative: File showing cumulative values for ecosystem respiration, evapo-transpiration, gross primary product, net ecosystem exchange and production as well as precipitation.
  • Annual: same as Monthly but with annual averages.
 
Export to DCATExport to BibTeXExport to EndNote/Zotero
Terrestrial Ecosystem Research Network
80 Meiers Road, Indooroopilly, Queensland, 4068, Australia.
Contact Us
Creative Commons Attribution 4.0 International Licence
https://creativecommons.org/licenses/by/4.0/
Please cite this dataset as {Author} ({PublicationYear}). {Title}. {Version, as appropriate}. Terrestrial Ecosystem Research Network. Dataset. {Identifier}. 
TERN services are provided on an “as-is” and “as available” basis. Users use any TERN services at their discretion and risk. They will be solely responsible for any damage or loss whatsoever that results from such use including use of any data obtained through TERN and any analysis performed using the TERN infrastructure.

Web links to and from external, third party websites should not be construed as implying any relationships with and/or endorsement of the external site or its content by TERN.

Please advise any work or publications that use this data via the online form at https://www.tern.org.au/research-publications/#reporting 

Contact us

Physical & Mail Address
The University of Queensland
Long Pocket Precinct
Level 5, Foxtail Building #1019
80 Meiers Road
Indooroopilly QLD 4068 Australia

General enquiries
P: (07) 3365 9097
tern@uq.edu.au

Data Support
esupport@tern.org.au

Subscribe for project updates, data releases, research findings, and users stories direct to your inbox.

Funding

TERN is supported by the Australian Government through the National Collaborative Research Infrastructure Strategy, NCRIS.

Co-investment

Accreditation

CoreTrustSeal

Resources

Terms Of Use

Disclaimer

Copyright

Data Licensing

Help & Support

Key Operating Partners
Version:6.2.11