This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), https://doi.org/10.5194/bg-14-2903-2017. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see https://github.com/OzFlux/PyFluxPro/wiki.
The site was identified as tropical pasture dominated by species Chamaecrista rotundifolia (Round-leaf cassia cv. Wynn), Digitaria milijiana (Jarra grass) and Aristida sp. standing at approximately 0.3m tall. The soil at the site was a mixture of red kandosol and deep sand. Elevation of the site was close to 70m and mean annual precipitation at a nearby Bureau of Meteorology site was 1250mm. Maximum temperatures ranged from 37.5°C (in October) to 31.2°C (in June), while minimum temperatures ranged from 12.6°C (in July) to 23.8°C (in January). Maximum temperatures varied on a seasonal basis between 6.3°C while minimum temperatures varied by 11.2°C.
The instrument mast was 15 meters tall. Heat, water vapour and carbon dioxide measurements were taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation were measured.
Ancillary measurements taken at the site included LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, N and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the transect in September 2008.
The site was destroyed by fire in September 2013.
The site was identified as tropical pasture dominated by species Chamaecrista rotundifolia (Round-leaf cassia cv. Wynn), Digitaria milijiana (Jarra grass) and Aristida sp. standing at approximately 0.3m tall. The soil at the site was a mixture of red kandosol and deep sand. Elevation of the site was close to 70m and mean annual precipitation at a nearby Bureau of Meteorology site was 1250mm. Maximum temperatures ranged from 37.5°C (in October) to 31.2°C (in June), while minimum temperatures ranged from 12.6°C (in July) to 23.8°C (in January). Maximum temperatures varied on a seasonal basis between 6.3°C while minimum temperatures varied by 11.2°C.
The instrument mast was 15 meters tall. Heat, water vapour and carbon dioxide measurements were taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation were measured.
Ancillary measurements taken at the site included LAI, leaf-scale physiological properties (gas exchange, leaf isotope ratios, N and chlorophyll concentrations), vegetation optical properties and soil physical properties. Airborne based remote sensing (Lidar and hyperspectral measurements) was carried out across the transect in September 2008.
The site was destroyed by fire in September 2013.
Credit
We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging.
The site was managed by Monash University and Charles Darwin University. The flux station was part of the Australia OzFlux Network and contributed to the international FLUXNET Network.
Purpose
The purpose of the Daly River Pasture Flux station was to:
Provide information as part of a larger network of flux stations established along the North Australian Tropical Transect (NATT) gradient, which extends ~1000km south from Darwin 12.5°S.
Examine spatial patterns and processes of land-surface-atmosphere exchanges (radiation, heat, moisture, CO2 and other trace gasses) across scales from leaf to landscape scales within Australian savannas.
Determine the climate and ecosystem characteristics (physical structure, species composition, physiological function) that drive spatial and temporal variations of carbon, water and energy fluxes from north Australian savanna.
Quantify fluxes over land use which includes grazing, introduced pastures and low stock density.
Lineage
All flux raw data is subject to the quality control process OzFlux QA/QC to generate data from L1 to L6. Levels 3 to 6 are available for re-use. Datasets contain Quality Controls flags which will indicate when data quality is poor and has been filled from alternative sources. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017 .