This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.3) as described in Isaac et al. (2017), https://doi.org/10.5194/bg-14-2903-2017. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see https://github.com/OzFlux/PyFluxPro/wiki.
The Great Western Woodlands (GWW) comprise a 16 million hectare mosaic of temperate woodland, shrubland and mallee vegetation in south-west Western Australia. The region has remained relatively intact since European settlement, owing to the variable rainfall and lack of readily accessible groundwater. The woodland component is globally unique in that nowhere else do woodlands occur at as little as 220 mm mean annual rainfall. Further, other temperate woodlands around the world have typically become highly fragmented and degraded through agricultural use. The Great Western Woodlands Site was established in 2012 in the Credo Conservation Reserve. The site is in semi-arid woodland and was operated as a pastoral lease from 1907 to 2007. The core 1 ha plot is characterised by Eucalyptus salmonophloia (salmon gum), with Eucalyptus salubris and Eucalyptus clelandii dominating other research plots. The flux station is located in Salmon gum woodland. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/great-western-woodlands-supersite/ .
The Great Western Woodlands (GWW) comprise a 16 million hectare mosaic of temperate woodland, shrubland and mallee vegetation in south-west Western Australia. The region has remained relatively intact since European settlement, owing to the variable rainfall and lack of readily accessible groundwater. The woodland component is globally unique in that nowhere else do woodlands occur at as little as 220 mm mean annual rainfall. Further, other temperate woodlands around the world have typically become highly fragmented and degraded through agricultural use. The Great Western Woodlands Site was established in 2012 in the Credo Conservation Reserve. The site is in semi-arid woodland and was operated as a pastoral lease from 1907 to 2007. The core 1 ha plot is characterised by Eucalyptus salmonophloia (salmon gum), with Eucalyptus salubris and Eucalyptus clelandii dominating other research plots. The flux station is located in Salmon gum woodland. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/great-western-woodlands-supersite/ .
Credit
We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging.
The Great Western Woodlands Site was established in 2012 and is managed by CSIRO Land and Water and funded by TERN and the WA Department of Environment and Conservation. The flux station is part of the Australia OzFlux Network and contributes to the international FLUXNET Network.
Purpose
The flux station and site work towards building a process-based understanding of semi-arid woodlands to inform management and climate adaptation in the Great Western Woodlands and climate-resilient restoration in the adjacent WA wheatbelt.
Lineage
All flux raw data is subject to the quality control process OzFlux QA/QC to generate data from L1 to L6. Levels 3 to 6 are available for re-use. Datasets contain Quality Controls flags which will indicate when data quality is poor and has been filled from alternative sources. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017 .