Data Apps
EcoImagesEcoPlots
Tools
CoESRA Virtual DesktopData DiscoveryLandscape Data VisualiserSHaRED Data SubmissionTERN Linked Data ResourcesTERN Account
Resources
Terms Of UseDisclaimerCopyrightData LicensingHelp & Support
logo
Data

Data Discovery

  • Home
  • Search
  • Resources
    LTES SurveyResearch Infrastructure
    TDDP User ManualTDDP API

Otway Flux Data Release 2021_v1 

Ver: 1.0
Status of Data: completed
Update Frequency: biannually
Security Classification: unclassified
Record Last Modified: 2025-12-02
Viewed 144 times
Accessed 6 times
Dataset Created: 2021-08-06
Dataset Published: 2021-09-19
Data can be accessed from the following links:
HTTPPoint-of-truth metadata URLHTTPNetCDF files (2021_v1)HTTPro-crate-metadata.json
How to cite this collection:
Kitchen, M. (2021). Otway Flux Data Release 2021_v1. Version 1.0. Terrestrial Ecosystem Research Network. Dataset. https://dx.doi.org/10.25901/j7c4-xt31 
This data release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in semi-arid eucalypt woodland using eddy covariance techniques. It been processed using PyFluxPro (v3.3.0) as described in Isaac et al. (2017), https://doi.org/10.5194/bg-14-2903-2017. PyFluxPro takes data recorded at the flux tower and process this data to a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER). For more information about the processing levels, see https://github.com/OzFlux/PyFluxPro/wiki.

The Otway flux station was located at Narrinda South in south west Victoria, Australia.The pasture was grazed by dairy cattle with average grass height of 0.1m. Annual average rainfall at the site was around 800mm and was only moderately seasonal. Mean daily temperature ranged from 25°C in February to 12°C in July. The flux station was situated on a 10m tower. Fluxes of heat, water vapour and carbon dioxide were measured using the open-path eddy covariance technique. Supplementary measurements included temperature, humidity, rainfall, total solar, photosynthetically active radiation (PAR) and net radiation. Soil temperature and heat flux were also measured. The Otway flux station was established in February 2007 on private land at Nirranda South and managed by CSIRO Marine and Atmospheric Research staff as part of the Cooperative Research Centre for Greenhouse Gas Technologies.
For additional site information, see http://www.ozflux.org.au/monitoringsites/otway/index.html . 
Credit
We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging. The Otway flux station managed by CSIRO Marine and Atmospheric Research staff as part of the Cooperative Research Centre for Greenhouse Gas Technologies.
The Otway flux station is supported by CO2CRC. Equipment was provided by CO2CRC. 
Purpose
The purpose of the Otway flux station was to :
measure exchanges of carbon dioxide, water vapour and energy between the soil and the atmosphere using micrometeorological techniques.
participate in the atmospheric monitoring strategy, which was developed by CO2CRC researchers in CSIRO, and is based on the effects of hypothetical storage leaks (point and diffuse) simulated by atmospheric dispersion models, over several distance scales at the Otway site.

The Otway Project included injection and geological storage of up to 100,000 tonnes of carbon dioxide together with the most extensive monitoring and verification program yet undertaken at a geosequestration site. 
Lineage
All flux raw data is subject to the quality control process OzFlux QA/QC to generate data from L1 to L6. Levels 3 to 6 are available for re-use. Datasets contain Quality Controls flags which will indicate when data quality is poor and has been filled from alternative sources. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017 . 
Method DocumentationData not provided.
Procedure StepsData not provided.
Nirranda South, Victoria, Australia.
Temporal Coverage
From 2007-08-11 to 2011-01-01 
Spatial Resolution

Data not provided.

Vertical Extent

Data not provided.

Data Quality Assessment Scope
If the data quality is poor, the data is filled from alternative sources. Filled data can be identified by the Quality Controls flags in the dataset. Quality control checks include (i) range checks for plausible limits, (ii) spike detection, (iii) dependency on other variables and (iv) manual rejection of date ranges. Specific checks applied to the sonic and IRGA data include rejection of points based on the sonic and IRGA diagnostic values and on either automatic gain control (AGC) or CO2 and H2O signal strength, depending upon the configuration of the IRGA. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017.
For further information about the software (PyFluxPro) used to process and quality control the flux data, see https://github.com/OzFlux/PyFluxPro/wiki. 
Data Quality Report
Data not provided. 
Data Quality Assessment Outcome
Data not provided. 
ANZSRC - FOR
Atmospheric sciences
Climate change impacts and adaptation
Ecosystem function
Environmental management
Soil sciences
GCMD Sciences
ATMOSPHERE - AIR TEMPERATURE
ATMOSPHERE - ATMOSPHERIC CARBON DIOXIDE
ATMOSPHERE - ATMOSPHERIC PRESSURE MEASUREMENTS
ATMOSPHERE - EVAPOTRANSPIRATION
ATMOSPHERE - HEAT FLUX
ATMOSPHERE - HUMIDITY
ATMOSPHERE - INCOMING SOLAR RADIATION
ATMOSPHERE - LONGWAVE RADIATION
ATMOSPHERE - PRECIPITATION AMOUNT
ATMOSPHERE - SHORTWAVE RADIATION
ATMOSPHERE - TRACE GASES/TRACE SPECIES
ATMOSPHERE - TURBULENCE
ATMOSPHERE - WIND DIRECTION
ATMOSPHERE - WIND SPEED
BIOSPHERE - PHOTOSYNTHETICALLY ACTIVE RADIATION
BIOSPHERE - TERRESTRIAL ECOSYSTEMS
LAND SURFACE - LAND PRODUCTIVITY
LAND SURFACE - SOIL MOISTURE/WATER CONTENT
LAND SURFACE - SOIL TEMPERATURE
SOLID EARTH - BIOGEOCHEMICAL PROCESSES
Horizontal Resolution
Point Resolution
Instruments
Campbell Scientific CS616
Campbell Scientific CSAT3
Campbell Scientific TCAV Averaging Soil Thermocouple Probe
Gill WindMaster HS
Gill Windsonic4
HyQuest Solutions TB3
Kipp&Zonen CNR1
LI-COR LI-7500
Vaisala HMP45C
Parameters
air temperature
downward heat flux at ground level in soil
ecosystem respiration
gross primary productivity of biomass expressed as carbon
mass concentration of water vapor in air
mole fraction of carbon dioxide in air
mole fraction of water vapor in air
Monin-Obukhov length
net ecosystem exchange
net ecosystem productivity
relative humidity
soil moisture content
soil temperature
specific humidity
specific humidity saturation deficit in air
surface air pressure
surface downwelling longwave flux in air
surface downwelling shortwave flux in air
surface friction velocity
surface net downward radiative flux
surface upward flux of available energy
surface upward latent heat flux
surface upward mole flux of carbon dioxide
surface upward sensible heat flux
surface upwelling longwave flux in air
surface upwelling shortwave flux in air
thickness of rainfall amount
upward mole flux of carbon dioxide due inferred from storage
water evapotranspiration flux
water vapor partial pressure in air
water vapor saturation deficit in air
wind from direction
wind speed
Platforms
Otway Flux Station
Temporal Resolution
Hourly - < Daily
Topic
climatologyMeteorologyAtmosphere
User Defined
AU-Otw
CO2CRC Otway Project
Author
Kitchen, Mark
Contact Point
Kitchen, Mark
Publisher
Terrestrial Ecosystem Research Network
Etheridge, D et al., 2011. Atmospheric monitoring of the CO2CRC Otway Project for large scale CO2 storage projects. Energy Procedia, 4(2011) 3666-3675. doi:10.1016/j.egypro.2011.02.298
Beringer, Jason et al., 2016. An introduction to the Australian and New Zealand flux tower network – OzFlux. Biogeosciences, 13(21). doi:10.5194/bg-13-5895-2016
Isaac, Peter et al., 2017. OzFlux data: network integration from collection to curation. Biogeosciences, 14(12). doi:10.5194/bg-14-2903-2017
Export to DCATExport to BibTeXExport to EndNote/Zotero
Terrestrial Ecosystem Research Network
80 Meiers Road, Indooroopilly, Queensland, 4068, Australia.
Contact Us
Creative Commons Attribution 4.0 International Licence
https://creativecommons.org/licenses/by/4.0/
TERN services are provided on an "as-is" and "as available" basis. Users use any TERN services at their discretion and risk. They will be solely responsible for any damage or loss whatsoever that results from such use including use of any data obtained through TERN and any analysis performed using the TERN infrastructure.
Web links to and from external, third party websites should not be construed as implying any relationships with and/or endorsement of the external site or its content by TERN.

Please advise any work or publications that use this data via the online form at https://www.tern.org.au/research-publications/#reporting 
Please cite this dataset as {Author} ({PublicationYear}). {Title}. {Version, as appropriate}. Terrestrial Ecosystem Research Network. Dataset. {Identifier}. 

Contact us

Physical & Mail Address
The University of Queensland
Long Pocket Precinct
Level 5, Foxtail Building #1019
80 Meiers Road
Indooroopilly QLD 4068 Australia

General enquiries
P: (07) 3365 9097
tern@uq.edu.au

Data Support
esupport@tern.org.au

Subscribe for project updates, data releases, research findings, and users stories direct to your inbox.

Funding

TERN is supported by the Australian Government through the National Collaborative Research Infrastructure Strategy, NCRIS.

Co-investment

Accreditation

CoreTrustSeal

Resources

Terms Of Use

Disclaimer

Copyright

Data Licensing

Help & Support

Key Operating Partners
Version:6.2.22