This dataset consists of measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer in woody savanna using eddy covariance techniques.
The ecosystem was dominated by Eucalyptus tectifica and Planchonia careya .
Elevation of the site was close to 90m and mean annual precipitation at a nearby Bureau of Meteorology site was 1730mm. Maximum temperatures ranged from 31.4°C (in June) to 36.8°C (in October) while minimum temperatures range from 16.2°C (in July) to 25.1°C (in December). Maximum temperature varied seasonally by approximately 5.4°C and minimum temperatures varied by approximately 8.9°C.The instrument mast was 15 meters tall. Heat, water vapour and carbon dioxide measurements were taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation were measured above the canopy. Soil heat fluxes are measured and soil moisture content was gathered using time domain reflectometry.
This data is also available at http://data.ozflux.org.au .
The ecosystem was dominated by Eucalyptus tectifica and Planchonia careya .
Elevation of the site was close to 90m and mean annual precipitation at a nearby Bureau of Meteorology site was 1730mm. Maximum temperatures ranged from 31.4°C (in June) to 36.8°C (in October) while minimum temperatures range from 16.2°C (in July) to 25.1°C (in December). Maximum temperature varied seasonally by approximately 5.4°C and minimum temperatures varied by approximately 8.9°C.The instrument mast was 15 meters tall. Heat, water vapour and carbon dioxide measurements were taken using the open-path eddy flux technique. Temperature, humidity, wind speed, wind direction, rainfall, incoming and reflected shortwave radiation and net radiation were measured above the canopy. Soil heat fluxes are measured and soil moisture content was gathered using time domain reflectometry.
This data is also available at http://data.ozflux.org.au .
Credit
We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging.
The site was established in November 2007 and was managed by Monash University and Charles Darwin University until it was decommissioned in May 2009. The station was part of OzFlux, the Australia Flux Network and contributed data to the international FLUXNET Network.
Purpose
The purpose of the Adelaide River Flux Station was to:
Provide information as part of a larger network of flux stations established along the North Australian Tropical Transect (NATT) gradient, which extends ~1000km south from Darwin 12.5°S.
Examine spatial patterns and processes of land-surface-atmosphere exchanges (radiation, heat, moisture, CO2 and other trace gasses) across scales from leaf to landscape scales within Australian savannas.
Determine the climate and ecosystem characteristics (physical structure, species composition, physiological function) that drive spatial and temporal variations of carbon, water and energy fluxes from north Australian savanna.
Determine if fluxes of carbon, water vapour and heat over the various ecosystems as derived from the various measurement techniques can be combined to form a comprehensive and consistent estimate of the regional fluxes and budgets across the landscape.
Lineage
All flux raw data is subject to the quality control process OzFlux QA/QC to generate data from L1 to L6. Levels 3 to 6 are available for re-use. Datasets contain Quality Controls flags which will indicate when data quality is poor and has been filled from alternative sources. For more details, refer to Isaac et al (2017) in the Publications section, https://doi.org/10.5194/bg-14-2903-2017 .