Data Apps
EcoImagesEcoPlots
Tools
CoESRA Virtual DesktopData Discovery PortalLandscape Data VisualiserSHaRED Data SubmissionTERN Linked Data ResourcesTERN Account
Resources
Terms Of UseDisclaimerCopyrightData LicensingHelp & Support
logo
Data

Data Discovery

  • Home
  • Search
  • Resources
    LTES SurveyResearch Infrastructure
    TDDP User ManualTDDP API

Fletcherview Tropical Rangeland Flux Data Release 2025_v1 

Ver: 2025_v1
Status of Data: completed
Update Frequency: biannually
Security Classification: unclassified
Record Last Modified: 2025-03-24
Viewed 16 times
Accessed 8 times
Dataset Created: 2025-03-13
Dataset Published: 2025-03-24
Data can be accessed from the following links:
HTTPPoint-of-truth metadata URLOPeNDAPNetCDF files (2025_v1)HTTPro-crate-metadata.json
How to cite this collection:
Liddell, M., Cleverly, J. & Owens, J. (2025). Fletcherview Tropical Rangeland Flux Data Release 2025_v1. Version 2025_v1. Terrestrial Ecosystem Research Network. Dataset. https://dx.doi.org/10.25901/86sh-w117 
This release consists of flux tower measurements of the exchange of energy and mass between the surface and the atmospheric boundary-layer using eddy covariance techniques. Data were processed using PyFluxPro (v3.4.18) as described by Isaac et al. (2017). PyFluxPro produces a final, gap-filled product with Net Ecosystem Exchange (NEE) partitioned into Gross Primary Productivity (GPP) and Ecosystem Respiration (ER).

Fletcherview Tropical Rangeland SuperSite was established in 2021 at James Cook University’s Fletcherview Research Station, a fully operational outback cattle station located 50 km west of Townsville, Queensland. The site is used for cattle grazing and is characterised by tall open savanna. The vegetation is dominated by native grasses such as blackspear and kangaroo grasses, as well as introduced species like buffel grass, signal grass and leucaena. Fletcherview typically experiences a dry and wet season, with most rainfall occurring between January and April. 
Credit
We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging.
Fletcherview Tropical Rangeland SuperSite is managed by James Cook University. Infrastructure at the site was funded under the Queensland Government’s Research Infrastructure Co-Investment Fund (RICF) for co-investment to the Terrestrial Ecosystem Research Network (TERN), a project of the Commonwealth’s National Collaborative Research Infrastructure Strategy (NCRIS). This site is part of OzFlux Australia. 
Purpose
The purpose of Fletcherview Tropical Rangeland flux station is to:
  • measure the exchange of carbon dioxide, water vapour and energy between a tropical, semi-arid savanna ecosystem and the atmosphere using micrometeorological techniques
  • support an understanding of forage dynamics on an active cattle station
  • support critical zone science, specifically those related to soil processes, hydrology and evaporation
  • support an understanding of environmental variability on ecosystem processes (such as photosynthesis, respiration or changes in plant structure and function)
  • provide a contextual basis for understanding patterns of plant and animal biodiversity (e.g. abiotic factors)
  • utilise the measurements for parameterising forage and grazing models
  • utilise the measurements for parameterising and validating remote sensing measurements over semi-arid savanna ecosystems
  • utilise the measurements for parameterising and validating the Earth System models to better understand the effects of climate change.

 
Lineage
All flux raw data is subject to the quality control process OzFlux QA/QC to generate data from L1 to L6. Levels 3 to 6 are available for re-use. Datasets contain Quality Controls flags which will indicate when data quality is poor and has been filled from alternative sources. For more details, refer to Isaac et al. (2017). 
Method DocumentationIsaac P., Cleverly J., McHugh I., van Gorsel E., Ewenz C. and Beringer, J. (2017). OzFlux data: network integration from collection to curation, Biogeosciences, 14: 2903-2928
Procedure StepsData not provided.
Fletcherview Tropical Rangeland SuperSite and flux station is located on JCU’s Fletcherview Cattle Station near Charters Towers in North Queensland.
Temporal Coverage
From 2022-01-22 to 2025-01-17 
Spatial Resolution

Data not provided.

Vertical Extent

Data not provided.

Data Quality Assessment Scope
Processing levels

Under each of the data release directories, the netcdf files are organised by processing levels (L3, L4, L5 and L6):
  • L3 (Level 3) processing applies a range of quality assurance/quality control measures (QA/QC) to the L1 data. The variable names are mapped to the standard variable names (CF 1.8) as part of this step. The L3 netCDF file is then the starting point for all further processing stages.
  • L4 (Level 4) processing fills gaps in the radiation, meteorological and soil quantities utilising AWS (automated weather station), ACCESS-G (Australian Community Climate and Earth-System Simulator) and ERA5 (the fifth generation ECMWF atmospheric reanalysis of the global climate).
  • L5 (Level 5) processing fills gaps in the flux data employing the artificial neural network SOLO (self-organising linear output map).
  • L6 (Level 6) processing partitions the gap-filled NEE into GPP and ER.
Each processing level has two sub-folders ‘default’ and ‘site_pi’:
  • default: contains files processed using PyFluxPro
  • site_pi: contains files processed by the principal investigators of the site.
If the data quality is poor, the data is filled from alternative sources. Filled data can be identified by the Quality Controls flags in the dataset. Quality control checks include:
  • range checks for plausible limits
  • spike detection
  • dependency on other variables
  • manual rejection of date ranges
Specific checks applied to the sonic and IRGA data include rejection of points based on the sonic and IRGA diagnostic values and on either automatic gain control (AGC) or CO2 and H2O signal strength, depending upon the configuration of the IRGA.

Fletcherview Flux Tower was established in 2022, and is currently active. The processed data release is currently ongoing, biannually. 
Isaac P., Cleverly J., McHugh I., van Gorsel E., Ewenz C. and Beringer, J. (2017). OzFlux data: network integration from collection to curation, Biogeosciences, 14: 2903-2928
Data Quality Assessment Outcome
Data not provided. 
ANZSRC - FOR
Atmospheric sciences
Climate change impacts and adaptation
Ecosystem function
Environmental management
Soil sciences
GCMD Sciences
LAND SURFACE - SOIL TEMPERATURE
ATMOSPHERE - TURBULENCE
ATMOSPHERE - EVAPOTRANSPIRATION
LAND SURFACE - LAND PRODUCTIVITY
ATMOSPHERE - HUMIDITY
ATMOSPHERE - HEAT FLUX
ATMOSPHERE - TRACE GASES/TRACE SPECIES
ATMOSPHERE - LONGWAVE RADIATION
ATMOSPHERE - INCOMING SOLAR RADIATION
BIOSPHERE - TERRESTRIAL ECOSYSTEMS
ATMOSPHERE - ATMOSPHERIC PRESSURE MEASUREMENTS
ATMOSPHERE - SHORTWAVE RADIATION
ATMOSPHERE - WIND SPEED
SOLID EARTH - BIOGEOCHEMICAL PROCESSES
LAND SURFACE - SOIL MOISTURE/WATER CONTENT
ATMOSPHERE - ATMOSPHERIC CARBON DIOXIDE
ATMOSPHERE - PRECIPITATION AMOUNT
BIOSPHERE - PHOTOSYNTHETICALLY ACTIVE RADIATION
ATMOSPHERE - WIND DIRECTION
ATMOSPHERE - AIR TEMPERATURE
Horizontal Resolution
Point Resolution
Instruments
Vaisala HMP155A
Observator RIM-7499-BOM
Campbell Scientific CS650
LI-COR LI-7500RS
Kipp&Zonen CNR4
Hukseflux HFP01
Campbell Scientific CSAT3B
Campbell Scientific TCAV Averaging Soil Thermocouple Probe
Parameters
wind speed
vertical wind
magnitude of surface downward stress
Monin-Obukhov length
net ecosystem productivity
gross primary productivity
surface friction velocity
ecosystem respiration
lateral component of wind speed
net ecosystem exchange
specific humidity saturation deficit in air
longitudinal component of wind speed
soil electrical conductivity
surface upward flux of available energy
enhanced vegetation index
downward heat flux at ground level in soil
volume fraction of condensed water in soil
surface upwelling longwave flux in air
thickness of rainfall amount
mole fraction of water vapor in air
water vapor partial pressure in air
wind from direction
surface upward mole flux of carbon dioxide
specific humidity
air temperature
surface net downward radiative flux
surface upward sensible heat flux
surface upward latent heat flux
mass concentration of water vapor in air
water evapotranspiration flux
water vapor saturation deficit in air
surface air pressure
surface upwelling shortwave flux in air
surface downwelling longwave flux in air
soil temperature
mole fraction of carbon dioxide in air
surface downwelling shortwave flux in air
relative humidity
Platforms
Fletcherview Flux Station
Temporal Resolution
1 minute - < 1 hour
Topic
climatologyMeteorologyAtmosphere
User Defined
fletch
tropical rangeland
Author
Liddell, Michael
Co-Author
Cleverly, Jamie
Owens, Jo
Contact Point
Liddell, Michael
Publisher
Terrestrial Ecosystem Research Network
Beringer J., Hutley L. B., McHugh I., Arndt S. K., Campbell D., Cleugh H. A., Cleverly J., Resco de Dios V., Eamus D., Evans B., Ewenz C., Grace P., Griebel A., Haverd V., Hinko-Najera N., Huete A., Isaac P., Kanniah K., Leuning R., Liddell M. J., Macfarlane C., Meyer W., Moore C., Pendall E., Phillips A., Phillips R. L., Prober S. M., Restrepo-Coupe N., Rutledge S., Schroder I., Silberstein R., Southall P., Yee M. S., Tapper N. J., van Gorsel E., Vote C., Walker J. and Wardlaw T. (2016). An introduction to the Australian and New Zealand flux tower network - OzFlux, Biogeosciences, 13: 5895-5916
Supplemental Information
Data not provided. 
Resource Specific Usage
Data not provided. 
Environment Description
File naming convention

The NetCDF files follow the naming convention below:

SiteName_ProcessingLevel_FromDate_ToDate_Type.nc
  • SiteName: short name of the site
  • ProcessingLevel: file processing level (L3, L4, L5, L6)
  • FromDate: temporal interval (start), YYYYMMDD
  • ToDate: temporal interval (end), YYYYMMDD
  • Type (Level 6 only): Summary, Monthly, Daily, Cumulative, Annual
For the NetCDF files at Level 6 (L6), there are several additional 'aggregated' files. For example:
  • Summary: This file is a summary of the L6 data for daily, monthly, annual and cumulative data. The files Monthly to Annual below are combined together in one file.
  • Monthly: This file shows L6 monthly averages of the respective variables, e.g. AH, Fc, NEE, etc.
  • Daily: same as Monthly but with daily averages.
  • Cumulative: File showing cumulative values for ecosystem respiration, evapo-transpiration, gross primary product, net ecosystem exchange and production as well as precipitation.
  • Annual: same as Monthly but with annual averages.
 
Export to DCATExport to BibTeXExport to EndNote/Zotero
Terrestrial Ecosystem Research Network
80 Meiers Road, Indooroopilly, Queensland, 4068, Australia.
Contact Us
Creative Commons Attribution 4.0 International Licence
https://creativecommons.org/licenses/by/4.0/
Please cite this dataset as {Author} ({PublicationYear}). {Title}. {Version, as appropriate}. Terrestrial Ecosystem Research Network. Dataset. {Identifier}. 
TERN services are provided on an “as-is” and “as available” basis. Users use any TERN services at their discretion and risk. They will be solely responsible for any damage or loss whatsoever that results from such use including use of any data obtained through TERN and any analysis performed using the TERN infrastructure.

Web links to and from external, third party websites should not be construed as implying any relationships with and/or endorsement of the external site or its content by TERN.

Please advise any work or publications that use this data via the online form at https://www.tern.org.au/research-publications/#reporting 

Contact us

Physical & Mail Address
The University of Queensland
Long Pocket Precinct
Level 5, Foxtail Building #1019
80 Meiers Road
Indooroopilly QLD 4068 Australia

General enquiries
P: (07) 3365 9097
tern@uq.edu.au

Data Support
esupport@tern.org.au

Subscribe for project updates, data releases, research findings, and users stories direct to your inbox.

Funding

TERN is supported by the Australian Government through the National Collaborative Research Infrastructure Strategy, NCRIS.

Co-investment

Accreditation

CoreTrustSeal

Resources

Terms Of Use

Disclaimer

Copyright

Data Licensing

Help & Support

Key Operating Partners
Version:6.2.11