The dataset contains maps of total % C3 and C4 plant cover, proportional C3 and C4 vegetation (relative to combined C3 and C4 cover), and vegetation δ13C isoscape (stable carbon isotope values) across Australia. Data are centered on year 2015. We used vegetation and land-use rasters to categorize grid-cells (100 m2) into woody (C3), native herbaceous (C3 and C4), and herbaceous cropland (C3 and C4) cover. TERN Ecosystem Surveillance field surveys and environmental factors were regressed to predict native C4 herbaceous cover. These layers were combined and a δ13C mixing model was used to calculate site-averaged δ13C values.
Credit
We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging. This work was funded by the Terrestrial Ecosystem Research Network (TERN), an Australian Government National Collaborative Research Infrastructure Strategy (NCRIS) project.
Purpose
The purpose of this work was to create maps of C3 and C4 abundance in Australia, and a vegetation δ13C isoscape for the continent. Maps of C3 and C4 plant abundance and stable carbon isotope values (δ13C) across terrestrial landscapes are valuable tools in ecology to investigate species distribution and carbon exchange. Australia has a predominance of C4-plants, thus monitoring change in C3:C4 cover and δ13C is essential to national management priorities.
Lineage
We used vegetation and land-use rasters to categorize grid-cells (100 m2) into woody (C3), native herbaceous, and herbaceous cropland (C3 and C4) cover. Field surveys and environmental factors were regressed to predict native C4 herbaceous cover. These layers were combined and a δ13C mixing model was used to calculate site-averaged δ13C values.